Contribution of motion parallax to segmentation and depth perception.
نویسندگان
چکیده
Relative image motion resulting from active movement of the observer could potentially serve as a powerful perceptual cue, both for segmentation of object boundaries and for depth perception. To examine the perceptual role of motion parallax from shearing motion, we measured human performance in three psychophysical tasks: segmentation, depth ordering, and depth magnitude estimation. Stimuli consisted of random dot textures that were synchronized to head movement with sine- or square-wave modulation patterns. Segmentation was assessed with a 2AFC orientation judgment of a motion-defined boundary. In the depth-ordering task, observers reported which modulation half-cycle appeared in front of the other. Perceived depth magnitude was matched to that of a 3D rendered image with multiple static cues. The results indicate that head movement might not be important for segmentation, even though it is crucial for obtaining depth from motion parallax--thus, concomitant depth perception does not appear to facilitate segmentation. Our findings suggest that segmentation works best for abrupt, sharply defined motion boundaries, whereas smooth gradients are more powerful for obtaining depth from motion parallax. Thus, motion parallax may contribute in a different manner to segmentation and to depth perception and suggests that their underlying mechanisms might be distinct.
منابع مشابه
Depth perception from dynamic occlusion in motion parallax: roles of expansion-compression versus accretion-deletion.
Motion parallax, or differential retinal image motion from observer movement, provides important information for depth perception. We previously measured the contribution of shear motion parallax to depth, which is only composed of relative motion information. Here, we examine the roles of relative motion and accretion-deletion information in dynamic occlusion motion parallax. Observers perform...
متن کاملDepth from motion parallax scales with eye movement gain.
Recent findings suggest that the slow eye movement system, the optokinetic response (OKR) in particular, provides the extra-retinal signal required for the perception of depth from motion parallax (Nawrot, 2003). Considering that both the perception of depth from motion parallax (Ono, Rivest & Ono, 1986; Rivest, Ono & Saida, 1989) and the eye movements made in response to head translations (Sch...
متن کاملMotion parallax, stereoscopy, and the perception of depth: Practical and theoretical issues
This paper deals with practical and theoretical issues related to motion parallax. Motion parallax implies that the perception of depth can be extracted from a temporal sequence of images that contain different perspectives. The present paper will focus on the relative effectiveness of motion parallax as compared to stereoscopic depth perception. It will be argued that motion parallax alone wil...
متن کاملDisruption of eye movements by ethanol intoxication affects perception of depth from motion parallax.
Motion parallax, the ability to recover depth from retinal motion generated by observer translation, is important for visual depth perception. Recent work indicates that the perception of depth from motion parallax relies on the slow eye movement system. It is well known that ethanol intoxication reduces the gain of this system, and this produces the horizontal gaze nystagmus that law enforceme...
متن کاملDepth perception as a function of motion parallax and absolute-distance information.
The results of three experiments demonstrated that the visual system calibrates motion parallax according to absolute-distance information in processing depth. The parallax was created by yoking the relative movement of random dots displayed on a cathode-ray tube to the movements of the head. In Experiment 1, at viewing distances of 40 cm and 80 cm, observers reported the apparent depth produce...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of vision
دوره 11 9 شماره
صفحات -
تاریخ انتشار 2011